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1 Project Description and Background

The period known as the Epoch of Reionization (EoR) is an active area of research in astronomy.
This period marks the last major phase change the universe has undergone as the universe went from
having predominantly neutral Hydrogen to completely ionized Hydrogen. We have evidence of this
event occurring due to Quasar (an active black hole) light marking regions in space where the universe
was once neutral to ionized. We know this occurred 1 Gyr years after the big bang but getting a
complete timeline of this period is challenging due to several factors:

1. Limited amount of tracers that can probe the full timeline of reionizations

2. The high neutral fraction at earlier times makes studying the light emitting from these galaxies
very difficult as the light we need to trace reionization gets absorbed and re-emitted in a random
direction

We aim to overcome these challenges by using a readily available tracer called Lyman-alpha
(Lya), which is the n = 2 to n = 1 transition in Hydrogen. This emission line is sensitive to neutral
Hydrogen and is produced plentifully in star-forming galaxies, which galaxies during the EoR are.
The main drawback to using Ly« is that in order for one to use it as a tracer of reionization, one needs
to know how much Ly« is being emitted by a galaxy. This is difficult due to point number 2 mentioned
above. Since Ly« is sensitive to neutral hydrogen if there is any neutral Hydrogen in the immediate
vicinity of a galaxy the Lya emission will get scattered out of our line of sight and drastically reduce
the observability of it. Our work is going to aim to overcome this by studying galaxies much closer to
us and in a period where the universe is completely ionized. The reason for this is that there is very
little neutral hydrogen across the line of sight from a galaxy to us and so all the Lya emission that is
emitted from a galaxy can traverse unimpeded to our detectors.

For this final project we have a sample of over 11,000 galaxies, each of those galaxies was run
through a Bayesian code to ascertain the physical galaxy properties. We also have the strength of
the observable which is the Lya emission strength, as well as another quantity called the equivalent
width. The equivalent width normalizes the strength of the Ly« emission by the continuum near the
emission line and can be a proxy of the strength of the emission line relative to the continuum level of
the galaxy spectrum.

2 Data Set Questions

The main science question we are after is can we generate a model to accurately predict the Ly«
predictor (Lyae EW,.). Once we have a model that is able to predict the Ly« predictor, we want to see
if we are able to interpret the model and see which subset of features is most impactful to accurately
predict the rest-frame Ly« equivalent width. Once we know the features that impact the observable,
we can begin to understand why the model is able to predict the observable so well.
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This interpretability on the features has very important implications to help us understand the
physical processes that lead to the observable. Once we have a good physical understanding going on
we can apply this model to constrain the neutral Hydrogen fraction at high redshifts since we expect
the neutral Hydrogen of the universe to increase as we go further back in time. However, in order for
us to compute the neutral Hydrogen we need to have a good way of modeling the expected emerged
Lyman-alpha emission from galaxies at those high redshift and distances. In the following sections
we outline the data and then outline some of the key science questions we set out to answer. Thus, the
two questions we seek to answer in this paper are as follows:

1. Can machine learning be used to accurately predict Lyman-alpha emission from a galaxy,
using its physical properties?

2. Which galaxy properties have the greatest impact on Lyman-alpha emission predictions?

2.1 Data Description

The data was processed by a custom pipeline made by Oscar Chavez Ortiz. Table 1 defines all vari-
ables.

Table 1: Definitions of all variables

Variable Description

Burst This is a burstiness metric for galaxies; it indicates whether the galaxy
is currently undergoing a burst of star formation.

Age [Gyr] The age of the galaxy, in Gyr.

Mass Formed Total mass formed throughout the history of the galaxy, in units of
log,o(M) (with M in M).

Metallicity The metal content of the galaxy relative to solar, i.e. Z/Z.

7 [Gyr] The exponential delay time in a delayed-7 star-formation history; the
characteristic time when star formation begins to decline.

Ay Dust attenuation in the V-band, in magnitudes.

log,,(U) Ionization parameter, measuring the intensity (‘“harshness”) of the radi-
ation field.

Stellar Mass Current stellar mass of the galaxy (in M,).

Formed Mass Total stellar mass formed over the galaxy’s history (in M,).

SFR [Mg yr!] Star-formation rate; how actively the galaxy is forming stars.

sSFR [yr—'] Specific SFR, log,,(SFR/M.), i.e. SFR per unit stellar mass.

Mass-Weighted Age | Stellar population age weighted by mass.

[Gyr]

Continued on next page
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Variable Description
Mass-Weighted Metallic- | Stellar population metallicity weighted by mass (same units as “Metal-
ity licity”).
Redshift Cosmological redshift of the galaxy.
X;Q)hot Chi-squared value from photometric fitting.
SN Signal-to-noise ratio of the detected emission line (unitless).
EW, [A] Rest-frame equivalent width of the emission line, computed as
EW/(1 + z) where z is the Ly« redshift.

2.2 Data Cleaning

Before we can run our non-linear ML models we need to make sure that the input data is of
good quality to make for accurate predictions. This involves removing obvious outliers, extreme data
and transforming the data to remove any skews in the feature distribution that could bias the data.
To generate the data we used to train and test our models we imposed physical and statistical cuts to
remove obviously bad data. These cuts included making sure the signal-to-noise ratio (SNR) of the
Lyca emission line is of good significance (SNR > 5.3). We also made sure that the galaxy properties
can be reliably trusted and this required us to use a photometric cut of X?)hot < 100. The last cut we
made was remove any unphysical Ly« equivalent width and for this cut we use Lyawe EW < 500. In
Figure 1 we show the feature distribution of all our input features. We can see from the plot that there
is a lot of skewness in some of the feature distributions and as such we need to do an additional pre-
processing step to make sure that the data is well suited for the non-linear ML models. As such, we
used the sklearn package StandardScalar to standardize and rescale the data so that no one feature
dominates the training in any of our ML algorithms.
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Figure 1: This plot shows the distribution of our features after we applied all the selection cuts to filter
out the data. We can see that some features are normally distributed wheras other features show strong
skewness. To remove the impact of the skewness in the input features we applied the sklearn function
StandardScalar to rescale and tranform the data.

3 Question 1: Model Selection

Can machine learning be used to accurately predict Lyman-
alpha emission from a galaxy, using its physical properties?

3.1 Model 1: Neural Network (Oscar)

My part of the project was looking into how accurate a neural network (NN) model can be to
predict Ly« emission. For the purpose of our project I used the Python package PyTorch to generate
the machine learning model. For each fully connected layer I used the Linear function in PyTorch
and the used a dropout layer between each fully connected layer. I used a dropout percentage of 20%
to prevent overfitting of the data as we increased the number of layers.

Because there are a lot of tunable parameters and features in NN models we fixed a couple of
them and changed only a few parameters. For the NN, we kept the activation function fixed to the
rectified linear unit (reLU), we kept the optimizer to be the Adam optimizer, and the criterion we used
to assess the loss of the NN was the MSE-loss function. For the tunable parameters we changed up the
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number of layers, 2, 3, and 4, but due to time constraints I did not have time to check more layers. We
also added into some run the inclusion of K-fold validation to the training set to assess performance of
the NN. For the k-fold validation we used another sklearn function called Kfold.split which returns
back a set of training and testing indexes based off of the K-fold the user specified.

In Figure 2 we see the loss as a function of epoch for a 4 layer model with and without K-fold
validation and we can see that the model with K-fold validation has a lower loss through the process.
As such for all the subsequent models 2 and 3 layers we kept the K-fold validation for all of them to
increase the performance.

—— Single Pass 4 Layers —— KFold 4 Layers Epoch 4 KFold 3 Layers Epoch 3
—— KFold 4 Layers Epoch 1 —— KFold 4 Layers Epoch § KFold 3 Layers Epoch 4
—— KFold 4 Layers Epoch 2 KFold 3 Layers Epoch 1 KFold 3 Layers Epoch 3

—— KFold 4 Layers Epoch 3 KFold 3 Layers Epoch 2
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Figure 2: Plot that shows the loss vs Epoch of our NN with 4 layers with and without K-Fold valida-
tion. we can see that the NN with only a single pass has a higher loss than the NN that incorporates
K-Fold validation. As such for the NN models with 2 and 3 layers we only use the K-fold validation
technique as that will drastically reduce the loss in our training.

We can see in Table 2 the breakdown of the RMSE, MAE, R? and how they compare between the
different models. We can see that the best model is the NN with 4 layers and using K-fold validation
for the K we used a value of K =5 for the cross validation.

We then use the best fitting model to make a prediction on the testing set and we can see in
Figure 3 that the model does a good job at predicting the Ly« rest frame equivalent width but fails to
reproduce values at high Lyaw EW. We think this is due to a sparsity of data at the high EW regime
making the NN not being able to predict accurately at those values. We think one thing that could
help is getting more data that encompasses the high Lya EW for better accuracy at this regime. One
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Table 2: A metrics table outlining the comparison between the NN models and how they performed
based off of MSE, MAE, and R? values. The best model is the one with 4 layers and using K-fold
validation. Further test is needed to see if adding in 5 layers offers significant improvement as well as
the number of nodes in each layer.

Model MAE MSE R?
NN 4 Layers (K-Fold) 46.0348 4572.53 0.29142
NN 4 Layers (No K-Fold) 51.77060 5371919  0.1659
NN 2 Layers (K-Fold) 50.5274 5393.7635  0.0956
NN 3 Layers (K-Fold) 53.768 6154985 0.1153

thing to also look into is how changing the fixed values we assumed in our NN architecture affects the
predictive accuracy. Some of the activation functions we could use instead of reLU can be the Sof tMax
activation function. We can also use different loss functions and asses the change in predictions and
some of the other loss functions can be the MAE-loss function or the Huber-loss function.

The final code we used for the 2, 3, 4 Layer NN models can be found in the following github
link: GitHub NN Python Script.

Test Set Predictions with K-Fold Cross-Validation
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Figure 3: Actual versus predicted rest-frame Ly equivalent widths for the test dataset. The dashed
line indicates perfect agreement.
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3.2 Model 2: XGBoost

XGBoost is particularly well-suited for predicting Ly« rest-frame equivalent widths (EW,.), as it ef-
fectively captures complex non-linear relationships, works well with sparse data, and incorporates
built-in regularization techniques such as subsampling, L,/L- penalties, and early stopping. Addition-
ally, XGBoost provides inherent interpretability through feature-importance metrics, enabling clearer
identification of key astrophysical predictors compared with neural networks, which typically require
extensive tuning and feature engineering to achieve comparable interpretability.

Predictors. Guided by domain knowledge and iterative evaluations aimed at minimizing the
Mean Squared Error, the following explanatory variables were selected for the XGBoost model (see
definitions in Table 1):

e dust: Ay

e stellar_mass

o sfr

* mass_weighted_age
* redshift

* delayed:age

Data Preparation. The analysis was conducted using Python packages scikit-learn and
XGBoost. The initial dataset of 11,862 galaxies was reduced to 3,393 by removing four entries with
missing Lya rest-frame equivalent widths (EW,.) values and applying quality criteria: photometric
chi-squared Xf)hot < 100, Ly« signal-to-noise ratio S/Niy, > 5.3, and rest-frame Ly« equivalent

width [EW,| < 500 A. These cuts were determined based on subject matter knowledge and evalu-
ating the effect on model performance. The dataset was then split into training (2,714 galaxies) and
test (679 galaxies) subsets using an 80/20 stratified split. Finally, all predictors were standardized
with StandardScaler to ensure zero mean and unit variance, preventing any single variable from
dominating the optimization.

Hyperparameter Tuning. Hyperparameter optimization was performed with a 300-trial
RandomizedSearchCV employing five-fold cross-validation. This approach balances computational
efficiency with thorough exploration of the parameter space. Compared to exhaustive GridSearchCV,
the randomized search offers substantial speed advantages while reliably identifying near-optimal
configurations. Key parameters tuned included learning rate, maximum tree depth, subsampling ratios,
and regularization strengths (L, and Ls). Table 3 lists the optimal hyperparameters.
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Table 3: Optimal XGBoost hyperparameters

Hyperparameter Value
colsample_bytree  0.92

gamma 0.14
learning_rate 0.06
max_depth 3

n_estimators 291
reg_alpha («) 2.88
reg_lambda (\) 3.93
subsample 0.65

Early stopping halted training after 291 boosting rounds when no improvement in validation loss
was observed for 50 consecutive iterations.

Model Performance. The final model was evaluated on the test dataset. Performance metrics
are summarized in Table 4. The model had an R? = 0.55, indicating that the model explains 55% of
the variance in observed Lya EW,.. Considering the inherent complexity and measurement noise in
astronomical datasets, where galaxies lie millions of light-years away, an RMSE of 66 and MAE of
47 demonstrate robust predictive capabilities.

Table 4: XGBoost model performance metrics on the test dataset

Metric Value

R* 0.55
RMSE 66
MAE 47
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3.2 Model 2: XGBoost
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Figure 4: Actual versus predicted rest-frame Ly equivalent widths for the test dataset. The dashed
line indicates perfect agreement.

In summary, XGBoost provided excellent predictive accuracy, efficient handling of complex,
sparse astrophysical data, and transparent interpretability, making it ideally suited to probe the physical
mechanisms behind Ly« emission and advance our understanding of cosmic reionization. The feature

interpretability of the XGBoost model is evaluated below in Section 4.

Code Availability. The XGBoost implementation is available here: XGBoost Model Code.



https://github.com/ea28/SDS326E_Project
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3.3 Model 3: Random Forest

We implemented a Random Forest regression model to predict the rest-frame Lyman-« equivalent
width (EW,.) using various physical galaxy properties. Random Forest was chosen for its ability
to model complex non-linear interactions and its built-in feature importance measures, which aid
physical interpretability.

After applying the quality cuts

. Xf;hot < 40,
* S/Npyq > 5.5,
¢« EW, < 500A,

we retained 1,965 galaxies, splitting them into 80% training (1,572) and 20% testing (393). We
selected seven key features and standardized them with StandardScaler.

Table 5: Feature descriptions used in the Random Forest model.

Feature Description

burst Burstiness metric for star formation

dust: Ay Dust attenuation in V-band (mag)

nebular:logU Ionization parameter (log radiation field intensity)
stellar_mass Current stellar mass (log,, M)

sfr Star-formation rate (Mg yr—1)

ssfr Specific SFR (log,, SFR/M)

mass_weighted_age Mass-weighted stellar age (Gyr)

Training and Hyperparameter Tuning

We tuned n_estimators, max_depth, min_samples_split, and min_samples_leaf using
GridSearchCV with 5-fold cross-validation, and employed early stopping (halting training if valida-
tion loss failed to improve for 50 consecutive rounds). The final test performance was:

Table 6: Random Forest performance on the test dataset (393 galaxies).

Metric Value

R? 0.396
MSE 5,160

Overall, the Random Forest achieves moderate predictive power of (R? = 0.396) and a (M SE =
95, 160) of the Lyman-« equivalent width. Due to the noisy underlying astronomy data, this model
performs decently well.

10
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3.4 Model 4: Decision Tree

We trained a Decision-Tree Regressor because it captures nonlinear relationships and feature
interactions. It offers clear interpretability by simple if-then split rules. After data cleaning, we per-
formed grid-search tuning and found the best hyperparameters to be:

Table 7: Optimal Decision Tree hyperparameters

Hyperparameter Value

max_depth 6
min_samples_leaf 0.5
min_samples_split 5
ccp_alpha 0

The best tree achieved:

Table 8: Decision Tree model performance metrics on the test dataset

Metric Value
Cross-validated R* 0.210
Test-set R? 0.172
Test RMSE 103.45

In general, the model captures only a fraction of the variance (17%). This suggests the model has
substantial residual error.

3.5 Best Model Evaluation

As we can see, as the /Wy increases, our model fails to accurately predict, the outliers here are
apparent. So we decided to take a look at the residual plot.

After examining the residual plot we see a downward moving trend as we predict larger E'W,..
This suggested some skewness in our original data that cannot be captured by the model. So we
decided to move on with another method that could see this. In summary, the decision tree model did
poorly in trying to find non-linear relationships between our predictors and the response variable. We
needed something like XG-boost to improve on it.

After determining the best model for each of our models the last step was to compare the perfor-
mance of all of them to the data and see which model is able to perform the best. The results of the
comparison can best be seen in the final comparison plot in Figure 7, where we show the RMSE for
all the models and we can see that model that performed the best was XGBoost and then the NN with
4 layers came in second.

11
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Figure 5: Actual versus predicted rest-frame Ly« equivalent widths for the test dataset. The dashed
line indicates perfect agreement.

Residual Plot for Decision Tree Regressor

400 ® e

Residuals

=200 1

—400 -

T T
300 400

Predicted EW _r

T T
100 200

Figure 6: Residual plot of Ly« equivalent widths for the test dataset.
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Figure 7: This plot shows a comparison of the RMSE scores between the different models on the
respective testing set. We can see that all of the do comparable with an average RMSE of 80, but
it is clear that the XGBoost has the lowest error followed by the NN model with 4 layers and K-fold
validation. Random Forrest does comparable to some NN architecture and we see that DT is the model
with the least predicitve power. RF and DT represent the Random Forrest model and the Decision Tree
model respectively.

4 Question 2: Feature Importance

Which galaxy properties have the greatest impact on Lyman-
Alpha emission predictions?

Model Interpretability with SHAP. As explained in the section above, the XGBoost Model
performed the best. We now wanted to understand why the model makes a given prediction. In order
to do this, we computed SHapley Additive exPlanations (SHAP) values for each explanatory variable.
Figure 8 shows the full distribution of SHAP values for every galaxy (beeswarm), while Figure 9 ranks
features by their mean absolute impact on the output. A quantitative summary is given in Table 9.

13
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Figure 8: SHAP summary (beeswarm) plot: each dot represents one galaxy. Horizontal position
indicates the contribution of that feature to the predicted EW,; color encodes the raw feature value
(blue = low, red = high).

SHAP Feature Importance (Mean Absolute Value)
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Figure 9: Mean absolute SHAP value for each predictor. Longer bars denote larger average influence
on the model output.

The mean-absolute SHAP ranking shows that the predicted rest-frame Ly« equivalent width is
primarily driven by changes in star-formation rate and dust attenuation in the V-band, with decreasing
sensitivity to the stellar mass-weighted age, the galaxy’s redshift, its stellar mass, and finally the
delayed-7 star-formation timescale.

14
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Table 9: Mean absolute SHAP values (impact on EW,. prediction)

Feature (|SHAP|) [A]
sfr 66.6
dust: Ay 63.1
mass_weighted_age 42.2
redshift 39.2
stellar_mass 20.8
delayed:age 18.6

5 Conclusion and Future Work

5.1

Conclusion

For us the end goal is to come up with a model that can predict Ly EW,. and the XGBoost

model is on par and better than the NN models. The advantage of using XGBoost over a typical NN
model is that XGBoost is able to be interpretable. The XGBoost model can produce SHAP plots
which show the relative feature importance to the prediction of Lya which has real physical impact
on understanding what galaxy properties drive Ly« observability. We can use physics to understand
the deeper connection between the galaxy properties and Ly« observability and to hone in on why this
trend exists.

In summary, our goal was to come up with a ML model that can predict Ly« equivalent width

and our conclusions are the following:

1.
2.

5.2

ML approach can be used to predict the Ly« equivalent widths to within an EW of 60-80

After comparing multiple non-linear machine learning models we see that the best model is
XGBoost

. Using SHAP analysis on the XGBoost model we can see that the features that impact the pre-

dictions the most are Star Formation Rate (SFR) and dust (dust: Ay/) which can be followed up
on for further analysis to determine their physical connections

Future Work

. Broaden the training set

The original dataset contained 11,862 galaxies and after data cleaning, we only used 3,393 of the
galaxies. Thus, our analysis was mainly on galaxies with clean data (photometric chi-squared
X?)hot < 100, Ly« signal-to-noise ratio S/Nry, > 5.3, and rest-frame Lya equivalent width
IEW,.| < 500 A). Future research could include analyzing galaxies where the Ly« equivalent
widths data is less clean.

15
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2. Refine model architectures
Explore deeper neural networks and alternative activations and loss functions to determine
whether current hyperparameter choices limit performance. Further refine the hyperparameter
selection for XGBoost, Random Forest, and Decision Trees.

3. Improve underlying data-quality
There were a substantial number of rows with unreasonably high levels of Ly« in the underlying
data. Future work could include improving the underlying code used to analyze and collect the
galaxy physical properties.

6 Contributions

¢ Oscar A. Chavez Ortiz: Developed the NN model and completed Project Description and
Background, contributed to section 2 and the conclusion.

* Ethan Abraham: Developed the XGBoost model and completed the XGBoost, feature impor-
tance, and future work sections; contributed to data description, optimizing data filtering cutoffs,
and formatting document.

* Kyla Ko: Developed and implemented the Random Forest model, including feature selection,
data cleaning with photometric and emission line quality cuts, and hyperparameter tuning using
GridSearchCV. Conducted SHAP-based feature importance analysis and contributed to compar-
ative model evaluation.

* Vincent Cheng: Developed Decision Tree model, including feature selection and data cleaning.
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